Cosmological Connection of SUSY Models at the LHC

Bhaskar Dutta
Texas A&M University

08/29/11

SUSY 2011

Discovery Time...

We are about to enter into an era of major discovery

Dark Matter: we need new particles to explain the content of the universe

Standard Model: we need new physics

Supersymmetry solves both problems!

The super-partners are distributed around 100 GeV to a few TeV

LHC: directly probes TeV scale

Future results from PLANCK, direct and indirect detections, rare decays etc. experiments in tandem with the LHC will confirm a model

This talk: Can we establish SUSY models at the LHC? How accurately we can calculate dark matter density?

SUSY at the LHC

The signal:

jets + leptons+ t's +W's+Z's+H's + missing E₁

SUSY at the LHC: Dilemma...

SUSY at the LHC

Final states → **Model Parameters**

→ Calculate dark matter density

Reconstruct sparticle masses, e.g.,

$$\widetilde{Q} \rightarrow q + l + \widetilde{\chi}_1^0$$

$$\widetilde{\boldsymbol{L}} \rightarrow \boldsymbol{l} + \widetilde{\boldsymbol{\chi}}_{1}^{0}$$

$$\tilde{\chi}^0_{2,3,4} \rightarrow Z, h, \bar{l}l + \tilde{\chi}^0_1$$

We may not be able to solve for masses of all the sparticles from a model

Solving for the MSSM: Very difficult

SUSY at the LHC: Dilemma...

SUSY at the LHC Dilemma...

OS-LS Subtraction

Extracting One side: jττ: BEST

OS-LS selection of ditaus selects the entire side

$$\tilde{\chi}_{2}^{0}$$

, but if we need to reconstruct

We use the following subtraction scheme: BEST

Normalize and perform the Same Jet - Previous Jet subtraction:

- Random pairs will cancel.
- Only the <u>related</u> pairs remain.

The OS-LS τ pair has momentum related to the momentum of this Same Event Jet.

We collect all 2τ + Jet pairs: get related pairs plus random pairs.

Using Jets from Previous Events: get only <u>random</u> pairs.

Bi Event Subtraction technique: BEST™

ロトイポトイミトイミト ま からで

BEST and SUSY Dilemma...

BEST

What BEST Looks Like...

Top reconstruction: BEST

Even with backgrounds, BEST triumphs.

- 7 TeV collision energy @ LHC, 2 fb⁻¹.
- ALPGEN tt̄ signal and W+jets background
- PYTHIA shower
- PGS detector

 $m_W = 81.11 \pm 0.32 \text{ GeV}$

 $m_t = 170.5 \pm 1.5 \,\mathrm{GeV}$

End Point Techniques with BEST

Even with backgrounds on top of SUSY, BEST triumphs.

- 14 TeV collision energy @ LHC, 100 fb⁻¹.
- nuSUGRA: $m_0 = 360 \text{ GeV}$, $m_{1/2} = 500 \text{ GeV}$, $\tan \beta = 40$, $A_0 = 0$, and $m_H = 732 \text{ GeV}$.
- SM: tt̄, W+Jets, and Z+Jets.

Significance improves 5 times with BEST

Determining mSUGRA Parameters

✓ Solved by inverting the following functions:

$$M_{j\tau\tau}^{\text{peak}} = X_1(m_{1/2}, m_0)$$
 $M_{\tau\tau}^{\text{peak}} = X_2(m_{1/2}, m_0, \tan \beta, A_0)$
 $M_{\text{eff}}^{\text{peak}} = X_3(m_{1/2}, m_0)$
 $M_{\text{eff}}^{(b) \text{peak}} = X_3(m_{1/2}, m_0)$

$$M_{\text{eff}}^{(b) \text{ peak}} = X_4(m_{1/2}, m_0, \tan \beta, A_0)$$

$$\frac{\partial \Omega_{\tilde{\chi}_{1}^{0}} h^{2} / \Omega_{\tilde{\chi}_{1}^{0}} h^{2}}{= 6.2\% (30 \,\text{fb}^{-1})} = 4.1\% (70 \,\text{fb}^{-1})$$

NUSUGRA: Relic Density

Non Universal SUGRA Model:

$$m_{Hu}^2 = m_0^2 (1 + \delta_u^2), m_{Hd}^2 = m_0^2 (1 + \delta_d^2),$$

•
$$M_{\text{eff}}^{(b, \text{ no } W) \text{ peak}} = f_2(m_{1/2});$$

•
$$M_{j\tau\tau}^{\text{peak}} = f_4(m_{1/2}, m_H, m_0);$$

•
$$M_{\tau\tau}^{\text{end}} = f_5(m_{1/2}, m_H, m_0, A_0);$$

• $M_{i\tau}^{\text{end}} = f_6(m_{1/2}, m_H, m_0, A_0, \tan \beta).$

Dutta, Kamon, Kolev, Krislock, Oh, PRD '10

\mathcal{L} (fb ⁻¹)	$m_{1/2}~({ m GeV})$	$m_H \; ({ m GeV})$	$m_0 \; ({ m GeV})$	$A_0 \; ({ m GeV})$	aneta	$\mu \; (\mathrm{GeV})$	$\Omega_{{ ilde \chi}_1^0} h^2$
1000	500 ± 3	727 ± 10	366 ± 26	3 ± 34	39.5 ± 3.8	321 ± 25	$0.094^{+0.107}_{-0.038}$
100	500 ± 9	727 ± 13	367 ± 57	0 ± 73	39.5 ± 4.6	331 ± 48	$0.088^{+0.168}_{-0.072}$
Syst.	±10	± 15	± 56	± 66	± 4.5	±48	$+0.175 \\ -0.072$

Mirage Mediation

- We have moduli mediation plus anomaly mediation
- Using observables like: M_{eff} , $M_{\tau\tau}$, P_t , $M_{j\tau\tau}$, it is possible to reconstruct the gaugino masses to check the gaugino unification scale

Conclusion

- Signature contains missing energy (R parity conserving) many jets and leptons: Discovering SUSY should not be a problem!
- Once SUSY is discovered, attempts will be made to measure the sparticle masses (highly non trivial!), establish the model and make connection between particle physics and cosmology
- Different cosmologically motivated regions of the SUGRA models have distinct signatures.
- Use the signatures and BEST to construct a decision tree
- It is possible to determine model parameters and the relic density based on the LHC measurements
- non-universal model parameters (Higgs nonuniversality)----Can be determined
- Mirage mediation models? ---- Can be determined